Global Existence, Stability and Blow–up of Solutions for p-Biharmonic Hyperbolic Equation with Weak and Strong Damping Terms

In this paper, we study the initial boundary value problem for the following $p$-biharmonic hyperbolic equation with weak and strong damping terms: $$ v_{tt}+\Delta_{p}^{2}v-\mu\Delta_{m}v_{t}+v_{t}=\omega|v|^{k-2}v. $$ Under some assumptions on the initial data, the constants $p,m$ and $k$, we prov...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2025
Автори: Gheraibia, Billel, Boumaza, Nouri, Imad, Aimene
Формат: Стаття
Мова:English
Опубліковано: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Теми:
Онлайн доступ:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1100
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Репозитарії

Journal of Mathematical Physics, Analysis, Geometry
Опис
Резюме:In this paper, we study the initial boundary value problem for the following $p$-biharmonic hyperbolic equation with weak and strong damping terms: $$ v_{tt}+\Delta_{p}^{2}v-\mu\Delta_{m}v_{t}+v_{t}=\omega|v|^{k-2}v. $$ Under some assumptions on the initial data, the constants $p,m$ and $k$, we prove the global existence, stability and blow-up results of solutions. The global solution is obtained by using potential well method and the stability based on Komornik's inequality. We also prove that the solution with negative initial energy blows up in finite and in infinite time. Mathematical Subject Classification 2020: 35L75, 35A01, 35B35