Global Existence, Stability and Blow–up of Solutions for p-Biharmonic Hyperbolic Equation with Weak and Strong Damping Terms

In this paper, we study the initial boundary value problem for the following $p$-biharmonic hyperbolic equation with weak and strong damping terms: $$ v_{tt}+\Delta_{p}^{2}v-\mu\Delta_{m}v_{t}+v_{t}=\omega|v|^{k-2}v. $$ Under some assumptions on the initial data, the constants $p,m$ and $k$, we prov...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Datum:2025
Hauptverfasser: Gheraibia, Billel, Boumaza, Nouri, Imad, Aimene
Format: Artikel
Sprache:English
Veröffentlicht: Фізико-технічний інститут низьких температур ім. Б.І. Вєркіна Національної академії наук України 2025
Schlagworte:
Online Zugang:https://jmag.ilt.kharkiv.ua/index.php/jmag/article/view/1100
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Назва журналу:Journal of Mathematical Physics, Analysis, Geometry

Institution

Journal of Mathematical Physics, Analysis, Geometry
Beschreibung
Zusammenfassung:In this paper, we study the initial boundary value problem for the following $p$-biharmonic hyperbolic equation with weak and strong damping terms: $$ v_{tt}+\Delta_{p}^{2}v-\mu\Delta_{m}v_{t}+v_{t}=\omega|v|^{k-2}v. $$ Under some assumptions on the initial data, the constants $p,m$ and $k$, we prove the global existence, stability and blow-up results of solutions. The global solution is obtained by using potential well method and the stability based on Komornik's inequality. We also prove that the solution with negative initial energy blows up in finite and in infinite time. Mathematical Subject Classification 2020: 35L75, 35A01, 35B35