On Herstein's identity in prime rings

A celebrated result of Herstein [10, Theorem 6] states that a ring \(R\) must be commutative if \([x,y]^{n(x,y)}=[x,y]\) for all \(x,y\in R,\) where \(n(x,y)>1\) is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity \(F([x,y])^{n}=F([x,y])\) and \(\...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2022
Автор: Sandhu, G. S.
Формат: Стаття
Мова:English
Опубліковано: Lugansk National Taras Shevchenko University 2022
Теми:
Онлайн доступ:https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1581
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Algebra and Discrete Mathematics

Репозитарії

Algebra and Discrete Mathematics
id oai:ojs.admjournal.luguniv.edu.ua:article-1581
record_format ojs
spelling oai:ojs.admjournal.luguniv.edu.ua:article-15812022-06-15T04:49:44Z On Herstein's identity in prime rings Sandhu, G. S. prime rings, lie ideal, generalized derivation, automorphism, GPIs 16W10, 16N60, 16W25 A celebrated result of Herstein [10, Theorem 6] states that a ring \(R\) must be commutative if \([x,y]^{n(x,y)}=[x,y]\) for all \(x,y\in R,\) where \(n(x,y)>1\) is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity \(F([x,y])^{n}=F([x,y])\) and \(\sigma([x,y])^{n}=\sigma([x,y]),\) where \(F\) and \(\sigma\) are generalized derivation and automorphism of a prime ring \(R\), respectively and \(n>1\) a fixed integer. Lugansk National Taras Shevchenko University 2022-06-15 Article Article Peer-reviewed Article application/pdf https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1581 10.12958/adm1581 Algebra and Discrete Mathematics; Vol 33, No 1 (2022) 2415-721X 1726-3255 en https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1581/pdf Copyright (c) 2022 Algebra and Discrete Mathematics
institution Algebra and Discrete Mathematics
baseUrl_str
datestamp_date 2022-06-15T04:49:44Z
collection OJS
language English
topic prime rings
lie ideal
generalized derivation
automorphism
GPIs
16W10
16N60
16W25
spellingShingle prime rings
lie ideal
generalized derivation
automorphism
GPIs
16W10
16N60
16W25
Sandhu, G. S.
On Herstein's identity in prime rings
topic_facet prime rings
lie ideal
generalized derivation
automorphism
GPIs
16W10
16N60
16W25
format Article
author Sandhu, G. S.
author_facet Sandhu, G. S.
author_sort Sandhu, G. S.
title On Herstein's identity in prime rings
title_short On Herstein's identity in prime rings
title_full On Herstein's identity in prime rings
title_fullStr On Herstein's identity in prime rings
title_full_unstemmed On Herstein's identity in prime rings
title_sort on herstein's identity in prime rings
description A celebrated result of Herstein [10, Theorem 6] states that a ring \(R\) must be commutative if \([x,y]^{n(x,y)}=[x,y]\) for all \(x,y\in R,\) where \(n(x,y)>1\) is an integer. In this paper, we investigate the structure of a prime ring satisfies the identity \(F([x,y])^{n}=F([x,y])\) and \(\sigma([x,y])^{n}=\sigma([x,y]),\) where \(F\) and \(\sigma\) are generalized derivation and automorphism of a prime ring \(R\), respectively and \(n>1\) a fixed integer.
publisher Lugansk National Taras Shevchenko University
publishDate 2022
url https://admjournal.luguniv.edu.ua/index.php/adm/article/view/1581
work_keys_str_mv AT sandhugs onhersteinsidentityinprimerings
first_indexed 2025-07-17T10:32:25Z
last_indexed 2025-07-17T10:32:25Z
_version_ 1837889849073336320