On a finite state representation of \(GL(n,\mathbb{Z})\)
It is examined finite state automorphisms of regular rooted trees constructed in [6] to represent groups \(GL(n,\mathbb{Z})\). The number of states of automorphisms that correspond to elementary matrices is computed. Using the representation of \(GL(2,\mathbb{Z})\) over an alphabet of size \(4\) a...
Gespeichert in:
| Datum: | 2023 |
|---|---|
| Hauptverfasser: | , |
| Format: | Artikel |
| Sprache: | English |
| Veröffentlicht: |
Lugansk National Taras Shevchenko University
2023
|
| Schlagworte: | |
| Online Zugang: | https://admjournal.luguniv.edu.ua/index.php/adm/article/view/2158 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Algebra and Discrete Mathematics |
Institution
Algebra and Discrete Mathematics| Zusammenfassung: | It is examined finite state automorphisms of regular rooted trees constructed in [6] to represent groups \(GL(n,\mathbb{Z})\). The number of states of automorphisms that correspond to elementary matrices is computed. Using the representation of \(GL(2,\mathbb{Z})\) over an alphabet of size \(4\) a finite state representation of the free group of rank \(2\) over binary alphabet is constructed. |
|---|