A linguistic approach to time series forecasting
Methods for predicting dynamic time series (including non-stationary ones) based on a linguistic approach, namely, the study of occurrences and repetition of so-called N-grams, are proposed. This approach is used in computational linguistics to create statistical translators, detect plagiarism and d...
Gespeichert in:
| Datum: | 2022 |
|---|---|
| Hauptverfasser: | Ланде, Д. В., Юзефович , В. В. |
| Format: | Artikel |
| Sprache: | Ukrainian |
| Veröffentlicht: |
Інститут проблем реєстрації інформації НАН України
2022
|
| Schlagworte: | |
| Online Zugang: | http://drsp.ipri.kiev.ua/article/view/262673 |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Назва журналу: | Data Recording, Storage & Processing |
Institution
Data Recording, Storage & ProcessingÄhnliche Einträge
-
Elements of nonlinear analysis of information streams
von: Lande, D. V., et al.
Veröffentlicht: (2017) -
Determination of the correlation degree between GNSS stations of Ukraine based on time series
von: Sosonka, Iryna
Veröffentlicht: (2021) -
Information technology for passive location of dynamic events in the border zone
von: Vasylenko, Vladyslav, et al.
Veröffentlicht: (2025) -
Forecast of time series using their segmentation based on wavelet analysis of scalogram
von: Voloshko, A. V., et al.
Veröffentlicht: (2016) -
A SYNTHETIC INSOLATION SERIES IN SIZING CALCULATIONS OF PV PLANTS
von: Gaevskii , O., et al.
Veröffentlicht: (2025)