Role of silicon oxide defects in emission process of Si-SiO₂ systems

Si-rich SiO₂ films prepared by r.f. magnetron sputtering and annealed at 1150 °C are investigated by photoluminescence, Raman and EPR methods. It is found that emission spectrum of as-prepared samples contains one broad infrared band. It is shown that one-year aging in ambient air and low-temperatur...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2003
Автори: Baran, M., Bulakh, B., Korsunska, N., Khomenkova, L., Yukhymchuk, V., Sheinkman, M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2003
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118036
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Role of silicon oxide defects in emission process of Si-SiO₂ systems / M. Baran, B. Bulakh, N. Korsunska, L. Khomenkova, V. Yukhymchuk, M. Sheinkman // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2003. — Т. 6, № 3. — С. 282-286. — Бібліогр.: 23 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id irk-123456789-118036
record_format dspace
spelling irk-123456789-1180362017-05-29T03:03:19Z Role of silicon oxide defects in emission process of Si-SiO₂ systems Baran, M. Bulakh, B. Korsunska, N. Khomenkova, L. Yukhymchuk, V. Sheinkman, M. Si-rich SiO₂ films prepared by r.f. magnetron sputtering and annealed at 1150 °C are investigated by photoluminescence, Raman and EPR methods. It is found that emission spectrum of as-prepared samples contains one broad infrared band. It is shown that one-year aging in ambient air and low-temperature annealing in oxygen atmosphere lead to the increase of infrared band intensity and the appearance of additional bands with maxima at 1.7 eV, 2.06 eV and 2.3 eV while annealing in hydrogen atmosphere results in the decrease of 1.7 eV and 2.06 eV band intensities. The decrease of crystallite sizes results in high-energy shift of infrared band while the peak positions of another ones (at 1.7, 2.06 and 2.3 eV) do not change. It is concluded that infrared band is connected with Si crystallites while another ones can be ascribed to silicon oxide defects, 1.7 and 2.06 eV bands being ascribed to oxygen-excess defects such as EX- and non-bridging oxygen hole centres. 2003 Article Role of silicon oxide defects in emission process of Si-SiO₂ systems / M. Baran, B. Bulakh, N. Korsunska, L. Khomenkova, V. Yukhymchuk, M. Sheinkman // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2003. — Т. 6, № 3. — С. 282-286. — Бібліогр.: 23 назв. — англ. 1560-8034 PACS: 61.46.+w; 61.72.Hh; 78.55-m; 78.66-w http://dspace.nbuv.gov.ua/handle/123456789/118036 en Semiconductor Physics Quantum Electronics & Optoelectronics Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
language English
description Si-rich SiO₂ films prepared by r.f. magnetron sputtering and annealed at 1150 °C are investigated by photoluminescence, Raman and EPR methods. It is found that emission spectrum of as-prepared samples contains one broad infrared band. It is shown that one-year aging in ambient air and low-temperature annealing in oxygen atmosphere lead to the increase of infrared band intensity and the appearance of additional bands with maxima at 1.7 eV, 2.06 eV and 2.3 eV while annealing in hydrogen atmosphere results in the decrease of 1.7 eV and 2.06 eV band intensities. The decrease of crystallite sizes results in high-energy shift of infrared band while the peak positions of another ones (at 1.7, 2.06 and 2.3 eV) do not change. It is concluded that infrared band is connected with Si crystallites while another ones can be ascribed to silicon oxide defects, 1.7 and 2.06 eV bands being ascribed to oxygen-excess defects such as EX- and non-bridging oxygen hole centres.
format Article
author Baran, M.
Bulakh, B.
Korsunska, N.
Khomenkova, L.
Yukhymchuk, V.
Sheinkman, M.
spellingShingle Baran, M.
Bulakh, B.
Korsunska, N.
Khomenkova, L.
Yukhymchuk, V.
Sheinkman, M.
Role of silicon oxide defects in emission process of Si-SiO₂ systems
Semiconductor Physics Quantum Electronics & Optoelectronics
author_facet Baran, M.
Bulakh, B.
Korsunska, N.
Khomenkova, L.
Yukhymchuk, V.
Sheinkman, M.
author_sort Baran, M.
title Role of silicon oxide defects in emission process of Si-SiO₂ systems
title_short Role of silicon oxide defects in emission process of Si-SiO₂ systems
title_full Role of silicon oxide defects in emission process of Si-SiO₂ systems
title_fullStr Role of silicon oxide defects in emission process of Si-SiO₂ systems
title_full_unstemmed Role of silicon oxide defects in emission process of Si-SiO₂ systems
title_sort role of silicon oxide defects in emission process of si-sio₂ systems
publisher Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України
publishDate 2003
url http://dspace.nbuv.gov.ua/handle/123456789/118036
citation_txt Role of silicon oxide defects in emission process of Si-SiO₂ systems / M. Baran, B. Bulakh, N. Korsunska, L. Khomenkova, V. Yukhymchuk, M. Sheinkman // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2003. — Т. 6, № 3. — С. 282-286. — Бібліогр.: 23 назв. — англ.
series Semiconductor Physics Quantum Electronics & Optoelectronics
work_keys_str_mv AT baranm roleofsiliconoxidedefectsinemissionprocessofsisio2systems
AT bulakhb roleofsiliconoxidedefectsinemissionprocessofsisio2systems
AT korsunskan roleofsiliconoxidedefectsinemissionprocessofsisio2systems
AT khomenkoval roleofsiliconoxidedefectsinemissionprocessofsisio2systems
AT yukhymchukv roleofsiliconoxidedefectsinemissionprocessofsisio2systems
AT sheinkmanm roleofsiliconoxidedefectsinemissionprocessofsisio2systems
first_indexed 2023-10-18T20:31:11Z
last_indexed 2023-10-18T20:31:11Z
_version_ 1796150413277265920