Effect of magnetic field on hysteretic characteristics of silicon diodes under conditions of low-temperature impurity breakdown

Effect of magnetic field (up to 14 T) on current-voltage characteristics of silicon n⁺ -p diodes which manifests hysteresis loops related with low-temperature impurity breakdown has been studied. With growth of magnetic field, the hysteresis loops are narrowed and decreased in amplitude and then...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2012
Автори: Aleinikov, A.B., Berezovets, V.A., Borblik, V.L., Shwarts, M.M., Shwarts, Yu.M.
Формат: Стаття
Мова:English
Опубліковано: Інститут фізики напівпровідників імені В.Є. Лашкарьова НАН України 2012
Назва видання:Semiconductor Physics Quantum Electronics & Optoelectronics
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/118325
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Effect of magnetic field on hysteretic characteristics of silicon diodes under conditions of low-temperature impurity breakdown / A.B. Aleinikov, V.A. Berezovets, V.L. Borblik, M.M. Shwarts, Yu.M. Shwarts // Semiconductor Physics Quantum Electronics & Optoelectronics. — 2012. — Т. 15, № 3. — С. 288-293. — Бібліогр.: 19 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:Effect of magnetic field (up to 14 T) on current-voltage characteristics of silicon n⁺ -p diodes which manifests hysteresis loops related with low-temperature impurity breakdown has been studied. With growth of magnetic field, the hysteresis loops are narrowed and decreased in amplitude and then disappear, but the breakdown continues in a soft form. Planar design of the diode has allowed separating the influence of magnetic field on mobility of the carriers executing impact ionization of the impurities and on the ionization energy itself. Theoretical analysis of the experimental data permitted us to determine the dependence of the ionization energy on the magnetic field. As in other investigated semiconductors, our results demonstrate the dependence of B¹/³ type. A model capable to explain qualitatively the mechanism of suppression of the hysteresis loops by magnetic field is proposed as well.