Generalized solutions of mixed problems for first-order partial functional differential equations

A theorem on the existence of solutions and their continuous dependence upon initial boundary conditions is proved. The method of bicharacteristics is used to transform the mixed problem into a system of integral functional equations of the Volterra type. The existence of solutions of this system is...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2006
Автор: Czernous, W.
Формат: Стаття
Мова:English
Опубліковано: Інститут математики НАН України 2006
Назва видання:Український математичний журнал
Теми:
Онлайн доступ:http://dspace.nbuv.gov.ua/handle/123456789/165156
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Generalized solutions of mixed problems for first-order partial functional differential equations / W. Czernous // Український математичний журнал. — 2006. — Т. 58, № 6. — С. 804–828. — Бібліогр.: 16 назв. — англ.

Репозиторії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
Опис
Резюме:A theorem on the existence of solutions and their continuous dependence upon initial boundary conditions is proved. The method of bicharacteristics is used to transform the mixed problem into a system of integral functional equations of the Volterra type. The existence of solutions of this system is proved by the method of successive approximations using theorems on integral inequalities. Classical solutions of integral functional equations lead to generalized solutions of the original problem. Differential equations with deviated variables and differential integral problems can be obtained from the general model by specializing given operators.