Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure

We report the results of defect structures studies of silicon implanted at different temperatures with Mn ions (Si:Mn) and of GaMnAs layers, next annealed under ambient and high pressures. An influence of annealing conditions on structural properties of Si:Mn and GaMnAs layers was investigated. It h...

Повний опис

Збережено в:
Бібліографічні деталі
Дата:2009
Автори: Bak-Misiuk, J., Romanowski, P., Domagala, J., Misiuk, A., Dynowska, E., Lusakowska, E., Barcz, A., Sadowski, J., Caliebe, W.
Формат: Стаття
Мова:English
Опубліковано: Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України 2009
Онлайн доступ:https://nasplib.isofts.kiev.ua/handle/123456789/5986
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Назва журналу:Digital Library of Periodicals of National Academy of Sciences of Ukraine
Цитувати:Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure / J. Bak-Misiuk, P. Romanowski, J. Domagala, A. Misiuk, E. Dynowska, E. Lusakowska, A. Barcz, J. Sadowski, W. Caliebe // Физика и техника высоких давлений. — 2009. — Т. 19, № 2. — С. 32-40. — Бібліогр.: 9 назв. — англ.

Репозитарії

Digital Library of Periodicals of National Academy of Sciences of Ukraine
id nasplib_isofts_kiev_ua-123456789-5986
record_format dspace
spelling Bak-Misiuk, J.
Romanowski, P.
Domagala, J.
Misiuk, A.
Dynowska, E.
Lusakowska, E.
Barcz, A.
Sadowski, J.
Caliebe, W.
2010-02-12T17:55:08Z
2010-02-12T17:55:08Z
2009
Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure / J. Bak-Misiuk, P. Romanowski, J. Domagala, A. Misiuk, E. Dynowska, E. Lusakowska, A. Barcz, J. Sadowski, W. Caliebe // Физика и техника высоких давлений. — 2009. — Т. 19, № 2. — С. 32-40. — Бібліогр.: 9 назв. — англ.
0868-5924
https://nasplib.isofts.kiev.ua/handle/123456789/5986
We report the results of defect structures studies of silicon implanted at different temperatures with Mn ions (Si:Mn) and of GaMnAs layers, next annealed under ambient and high pressures. An influence of annealing conditions on structural properties of Si:Mn and GaMnAs layers was investigated. It has been confirmed that annealing of the Si:Mn samples after implantation results in crystallization of silicon inside the buried postimplanted layer, as well as in the formation of ferromagnetic Mn4Si7 precipitates. A change of strain in the GaMnAs layer, from the compressive to the tensile one, related to a creation of nanoclustered MnAs, was found to be dependent on processing conditions and primary existing structural defects, while independent of the Mn concentration. An influence of primary defects on the structural transformations of the GaMnAs layer is discussed.
Приведено результати вивчення дефектних структур шарів кремнію, імплантованого іонами Mn (Si:Mn) при різних температурах, і GaMnAs з подальшим відпалом при зовнішньому і високому тиску. Досліджено вплив умов відпалу на структурні властивості шарів Si:Mn і GaMnAs. Показано, що відпал імплантованих зразків Si:Mn призводить до кристалізації кремнію усередині заглибленого постімплантованого шару, а також до утворення феромагнітних Mn4Si7-виділень. Виявлено, що зміна в GaMnAs-шарі напруження з того, що стискає, на те, що розтягує, пов'язана з утворенням нанокластерів MnAs, залежить від умов обробки і початкових дефектів структури і не залежить від концентрації Mn. Обговорюється вплив первинних дефектів на структурні перетворення в шарі GaMnAs.
en
Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure
Феромагнітні нанокластери в Si:Mn і GaMnAs, відпалених при високих температурі і тиску
Article
published earlier
institution Digital Library of Periodicals of National Academy of Sciences of Ukraine
collection DSpace DC
title Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure
spellingShingle Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure
Bak-Misiuk, J.
Romanowski, P.
Domagala, J.
Misiuk, A.
Dynowska, E.
Lusakowska, E.
Barcz, A.
Sadowski, J.
Caliebe, W.
title_short Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure
title_full Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure
title_fullStr Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure
title_full_unstemmed Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure
title_sort ferromagnetic nanoclusters in si:mn and gamnas annealed at high temperature–pressure
author Bak-Misiuk, J.
Romanowski, P.
Domagala, J.
Misiuk, A.
Dynowska, E.
Lusakowska, E.
Barcz, A.
Sadowski, J.
Caliebe, W.
author_facet Bak-Misiuk, J.
Romanowski, P.
Domagala, J.
Misiuk, A.
Dynowska, E.
Lusakowska, E.
Barcz, A.
Sadowski, J.
Caliebe, W.
publishDate 2009
language English
publisher Донецький фізико-технічний інститут ім. О.О. Галкіна НАН України
format Article
title_alt Феромагнітні нанокластери в Si:Mn і GaMnAs, відпалених при високих температурі і тиску
description We report the results of defect structures studies of silicon implanted at different temperatures with Mn ions (Si:Mn) and of GaMnAs layers, next annealed under ambient and high pressures. An influence of annealing conditions on structural properties of Si:Mn and GaMnAs layers was investigated. It has been confirmed that annealing of the Si:Mn samples after implantation results in crystallization of silicon inside the buried postimplanted layer, as well as in the formation of ferromagnetic Mn4Si7 precipitates. A change of strain in the GaMnAs layer, from the compressive to the tensile one, related to a creation of nanoclustered MnAs, was found to be dependent on processing conditions and primary existing structural defects, while independent of the Mn concentration. An influence of primary defects on the structural transformations of the GaMnAs layer is discussed. Приведено результати вивчення дефектних структур шарів кремнію, імплантованого іонами Mn (Si:Mn) при різних температурах, і GaMnAs з подальшим відпалом при зовнішньому і високому тиску. Досліджено вплив умов відпалу на структурні властивості шарів Si:Mn і GaMnAs. Показано, що відпал імплантованих зразків Si:Mn призводить до кристалізації кремнію усередині заглибленого постімплантованого шару, а також до утворення феромагнітних Mn4Si7-виділень. Виявлено, що зміна в GaMnAs-шарі напруження з того, що стискає, на те, що розтягує, пов'язана з утворенням нанокластерів MnAs, залежить від умов обробки і початкових дефектів структури і не залежить від концентрації Mn. Обговорюється вплив первинних дефектів на структурні перетворення в шарі GaMnAs.
issn 0868-5924
url https://nasplib.isofts.kiev.ua/handle/123456789/5986
citation_txt Ferromagnetic nanoclusters in Si:Mn and GaMnAs annealed at high temperature–pressure / J. Bak-Misiuk, P. Romanowski, J. Domagala, A. Misiuk, E. Dynowska, E. Lusakowska, A. Barcz, J. Sadowski, W. Caliebe // Физика и техника высоких давлений. — 2009. — Т. 19, № 2. — С. 32-40. — Бібліогр.: 9 назв. — англ.
work_keys_str_mv AT bakmisiukj ferromagneticnanoclustersinsimnandgamnasannealedathightemperaturepressure
AT romanowskip ferromagneticnanoclustersinsimnandgamnasannealedathightemperaturepressure
AT domagalaj ferromagneticnanoclustersinsimnandgamnasannealedathightemperaturepressure
AT misiuka ferromagneticnanoclustersinsimnandgamnasannealedathightemperaturepressure
AT dynowskae ferromagneticnanoclustersinsimnandgamnasannealedathightemperaturepressure
AT lusakowskae ferromagneticnanoclustersinsimnandgamnasannealedathightemperaturepressure
AT barcza ferromagneticnanoclustersinsimnandgamnasannealedathightemperaturepressure
AT sadowskij ferromagneticnanoclustersinsimnandgamnasannealedathightemperaturepressure
AT caliebew ferromagneticnanoclustersinsimnandgamnasannealedathightemperaturepressure
AT bakmisiukj feromagnítnínanoklasterivsimnígamnasvídpalenihprivisokihtemperaturíítisku
AT romanowskip feromagnítnínanoklasterivsimnígamnasvídpalenihprivisokihtemperaturíítisku
AT domagalaj feromagnítnínanoklasterivsimnígamnasvídpalenihprivisokihtemperaturíítisku
AT misiuka feromagnítnínanoklasterivsimnígamnasvídpalenihprivisokihtemperaturíítisku
AT dynowskae feromagnítnínanoklasterivsimnígamnasvídpalenihprivisokihtemperaturíítisku
AT lusakowskae feromagnítnínanoklasterivsimnígamnasvídpalenihprivisokihtemperaturíítisku
AT barcza feromagnítnínanoklasterivsimnígamnasvídpalenihprivisokihtemperaturíítisku
AT sadowskij feromagnítnínanoklasterivsimnígamnasvídpalenihprivisokihtemperaturíítisku
AT caliebew feromagnítnínanoklasterivsimnígamnasvídpalenihprivisokihtemperaturíítisku
first_indexed 2025-11-26T14:00:06Z
last_indexed 2025-11-26T14:00:06Z
_version_ 1850623994466664448
fulltext Физика и техника высоких давлений 2009, том 19, № 2 32 PACS: 73.61.Ey, 61.10.Nz, 61.72.Dd, 81.40.Vw J. Bak-Misiuk1, P. Romanowski1, J. Domagala1, A. Misiuk2, E. Dynowska1, E. Lusakowska1, A. Barcz1, J. Sadowski1,3, W. Caliebe4 FERROMAGNETIC NANOCLUSTERS IN Si:Mn AND GaMnAs ANNEALED AT HIGH TEMPERATURE–PRESSURE 1Institute of Physics, Polish Academy of Sciences Al. Lotnikow 32/46, 02-668 Warsaw, Poland E-mail: bakmi@ifpan.edu.pl 2Institute of Electron Technology Al. Lotnikow 46, 02-668 Warsaw, Poland 3Lund University, MAX-Lab Lund, SE-221 00, Sweden 4Hasylab Desy Notkerstrasse 85, D-22603 Hamburg, Germany We report the results of defect structures studies of silicon implanted at different tem- peratures with Mn ions (Si:Mn) and of GaMnAs layers, next annealed under ambient and high pressures. An influence of annealing conditions on structural properties of Si:Mn and GaMnAs layers was investigated. It has been confirmed that annealing of the Si:Mn samples after implantation results in crystallization of silicon inside the buried post- implanted layer, as well as in the formation of ferromagnetic Mn4Si7 precipitates. A change of strain in the GaMnAs layer, from the compressive to the tensile one, related to a creation of nanoclustered MnAs, was found to be dependent on processing conditions and primary existing structural defects, while independent of the Mn concentration. An influence of pri- mary defects on the structural transformations of the GaMnAs layer is discussed. 1. Introduction Ferromagnetic semiconductors have recently received much interest, since they hold out prospects for using electron spins in electronic devices. Ion implantation has been utilized to achieve ferromagnetism in semiconductor crystals. Ferromag- netic ordering in Si implanted with Mn+ ions (Si:Mn) has been reported recently; this ordering is evidently related to the structure of Mn-enriched near-surface layer in the implanted material. It has been found that, for Si:Mn produced by im- plantation with Mn+ doses, D = 1015–1016 cm–2, at energy, E = 300 keV, Curie temperature exceeds 400 K after rapid thermal annealing at 1070 K [1]. Ferro- magnetic properties of Si:Mn have been attributed to the formation of MnSi1.7 [2]. Физика и техника высоких давлений 2009, том 19, № 2 33 Among the compounds that can be used in spintronics, those created by intro- ducing ferromagnetic inclusions into the semiconducting matrix seem to be espe- cially promising. In order to obtain materials with desired magnetic properties, it is reasonable to start with inclusions with Curie temperature, TC, above the room one. The granular GaAs:MnAs material is a possible candidate because it exhibits ferromagnetic/superparamagnetic behavior at room temperature, dependent on MnAs cluster size [3–6]. As it has been stated, not only temperature but also enhanced hydrostatic pres- sure (HP) at processing of Si:Mn affect its magnetic properties [7]. This paper is focused on investigation of the defect structure of Si:Mn and GaMnAs annealed under ambient and enhanced hydrostatic pressures. 2. Experimental Cz–Si with oxygen concentration 9·1017 cm–3 or Fz–Si were implanted with 160 keV Mn+ ions at substrate temperature (Ts) 340 or 610 K, to a dose, D = 1·1016 cm–2. Si:Mn was processed for 1 h at up to 1270 K under ambient or en- hanced hydrostatic pressures, up to HP = 1.1 GPa. Structural characterization of the samples, before and after processing, was performed using synchrotron radia- tion at the W1.1 beamline of Hasylab-Desy. GaMnAs/GaAs samples were also studied. GaMnAs layers were grown on the 001 oriented GaAs substrates by MBE (Molecular Beam Epitaxy). After growth the GaMnAs/GaAs samples were processed for 1 h at HT = 650 K under ambient pressure (105 Pa) and HP = 1.1 GPa in Ar atmosphere. The samples processed for 1 h at HT = 650 K under 105 Pa were subsequently treated for 1 h at 920 K under HP = 1.1 GPa. We investigated an influence of the HP–HT treatment on the defect structure for two kinds of GaMnAs/GaAs samples with the same thickness (0.8 μm) of the GaMnAs layer: I – with the out-of-plane lattice parameter of GaMnAs higher than that of the substrate, after annealing at 670 K under 105 Pa (samples Ia and Ib, Table); II – with the out-of-plane lattice parameter of GaMnAs lower (due to a crea- tion of nanoclusters) than that of the substrate after annealing at 670 K under 105 Pa (sample II, Table). Table Out-of-plane lattice parameters (aas-grown, aT, aHP–T) and in-plane strain, before (εas-grown) and after annealing under 105 Pa (εT) and under HP (εHP–T); 670 K–1.1 GPa aas-grown aT aHP–T εas-grown εT εHP–TSample Mn content, % Å ×10–4 Ia 1.0 5.6592 5.6568 5.6574 –5.66 –3.54 –4.24 Ib 5.5 5.6806 5.6538 5.6542 –24 –0.71 –0.84 II 2.0 5.6607 5.6525 5.6511 –6.71 0.17 0.35 Физика и техника высоких давлений 2009, том 19, № 2 34 The defect structure of GaMnAs/GaAs was determined by high resolution X- ray diffraction method. The lattice parameters for GaMnAs, before and after HP– HT processing, were determined to an accuracy of 10–4 Å. Reciprocal space maps were registered for the (004) symmetrical reflections. Atomic Force Microscopy measurements (AFM) were performed with Digital Instrument in the tapping mode; the root mean square (RMS) roughness was de- termined (RMS is defined as a standard deviation of the roughness in the direction perpendicular to the surface). 3. Results and discussion For Cz–Si:Mn implanted at Ts = 340 K with D =1·1016 cm–2 (Fig. 1), the bur- ied implanted layers are amorphous, both just after implantation and after proc- essing at 610 K. The reflections from polycrystalline Si were detected after the treatment at 870 K, showing on re-crystallization of nanocrystalline layer (Fig. 1). Also peaks of small intensity corresponding to the ferromagnetic Mn4Si7 phase were observed. No influence of hydrostatic pressure applied during annealing on the defect structure of Si:Mn was detected for these samples. In the case of Fz–Si implantation at Ts = 610 K, the reflections coming from polycrystalline Si are detected. The reflections from the Mn4Si7 phase are visible after annealing at 870 K (Fig. 2). An increase of processing temperature up to 1070 K results in the increased intensity of reflection originating from the pres- ence of the Mn4Si7 phase. HP applied during processing influences re- crystallization of implantation – damaged material as results from observation of reflections from the polycrystalline Si fraction (Fig. 2). Simultaneously, annealing at 1070 K under HP results in the increased peak intensity coming from the fer- romagnetic Mn4Si7 phase (compare Fig. 2, curves 6 and 7). Fig. 1. Coplanar 2θ scan in grazing incidence geometry for Cz-Si:Mn implanted (D = = 1·1016 cm–2) at 340 K: 1 – as-implanted; 2, 4, 6 – an- nealed at 610, 870, and 1070 K, respectively, under 105 Pa; 3, 5, 7 – processed for 1 h at 610, 870, and 1070 K, re- spectively, under 1.1 GPa Физика и техника высоких давлений 2009, том 19, № 2 35 The X-ray 2θ/ω scans (004 reflection) for the GaMnAs layers, as-grown and treated at 670 K–105 Pa and at 670 K–1.1 GPa, are presented in Fig. 3 for the mentioned two kinds of samples. From the diffraction peak positions, the out-of- plane parameters of the layer material and in-plane strain, ε (ε = aII – arelax/arelax, where: arelax and aII are, respectively, the relaxed and in-plane lattice parameters of the layer material) were calculated. The out-of-plane lattice parameters measured to an accuracy of 10–4 Å and the strain values are listed in Table. In the case of Ia and Ib samples, a decrease of the out-of-plane lattice pa- rameter value is distinctly more pronounced for the HT-processed samples in comparison to those treated at HP–HT (Fig. 3 and Table) while still remains higher than the lattice parameter of GaAs (5.6533 Å). Before and after process- ing, the layers remained to be under compressive strain. More pronounced de- crease of the lattice parameter of the Ia and Ib type GaMnAs layers after proc- essing under ambient pressure (105 Pa), in comparison to that after processing under HP, can be explained by decreased diffusivity of Mn interstitials in GaM- nAs under HP. It has been reported earlier that HP can modify substantially dif- fusivity of dopants [9]. An influence of the HP-related changes on a concentra- tion of As antisites and on a creation of As clusters can influence the lattice pa- rameter value as well. In the case of processed II type sample, the out-of-plane and relaxed lattice parameters are lower than those of GaAs. This means that GaMnAs is under tensile stress. This effect is even more marked for the HP–HT treated sample (Fig. 3,b, Table). A change of strain, from the compressive to tensile state, has been reported to be related to a creation of MnAs nanoclusters [3–6]. During the HP–HT treatment, different compressibility of the MnAs nanoclusters and of the GaAs matrix involves a volume mismatch and additional internal strain is built up resulting in observed decrease of the lattice parameters of the GaAs matrix. Fig. 2. Coplanar 2θ scan in grazing incidence geometry for Fz-Si:Mn implanted (D = = 1·1016 cm–2) at 610 K: 1 – as-implanted; 2, 4, 6 – an- nealed at 610, 870, and 1070 K, respectively, under 105 Pa; 3, 5, 7 – processed for 1 h at 610, 870, and 1070 K, re- spectively, under 1.1 GPa Физика и техника высоких давлений 2009, том 19, № 2 36 a b c An influence of temperature ap- plied during the HP–HT treatment on the structure of sample II is presented in Fig. 4. The diffraction peaks for GaMnAs after processing at 920 K under 1.1 GPa are presented and compared with the diffraction peaks of GaMnAs after the treatment at 670 K–1.1 GPa. In the case of samples I processed at 920 K, polycrystalliza- tion of the layer material has been ob- served. In the case of sample II, the GaMnAs layer remains to be still sin- gle crystalline; its lattice parameters decrease in comparison to the case of sample treated at 670 K and strain, εHP–T, achieves the value equal to 4.07·10–4. Structural changes after processing at vari- ous temperatures in the GaMnAs/GaAs samples are well visible on the reciprocal space maps (Fig. 5). More marked increase of diffuse scattering in the case of sample II in comparison to that in the Ia one, after annealing at 670 K under ambient (compare Fig. 5,b,f) and enhanced pressures (Fig. 5,c,g) are correlated Fig. 3. 2θ/ω scans (004 reflection) for samples Ia (a), Ib (b) and II (c): 1 – as- grown sample, 2 – sample annealed at 670 K, 3 – sample treated at 670 K–1.1 GPa Fig. 4. Comparison of 2θ/ω scans (004 re- flection) for sample II treated at: 1 – 670 K– 1.1 GPa, 2 – 670 K–105 Pa + 920 K–1.1 GPa Физика и техника высоких давлений 2009, том 19, № 2 37 Fig. 5. 004 Reciprocal space maps of sample Ia (a, b, c, d) and of sample II (e, f, g, h): a, e – as-grown; b, f – annealed at HT = 650 K–105 Pa; c, g – treated at HT = 650 K–1.1 GPa; d, h – treated at 670 K–105 Pa + 920 K–1.1 GPa Физика и техника высоких давлений 2009, том 19, № 2 38 with a formation of the granular structure in the sample II. It means that a creation of the granular structure in GaAs (containing MnAs nanoclusters) is accompanied with the formation of small clusters producing a large distortion of host lattice re- sulting, in turn, in increased diffuse scattering. No influence of high pressure on diffuse scattering and defect creation was found for the both sample kinds. An increase of annealing temperature up to 920 K during the HP–HT treatment results in polycrystallization of the layer material (Fig. 5,d) for the I-type samples; in this case the granular structure was not detected. No marked changes of diffuse scattering with increased temperature were detected in the case of sample II. The both sample kinds differ not only in respect of the pressure-induced defect structure changes but also indicate various roughness after the HP–T processing at 670 K under 1.1 GPa. AFM images of the Ib sample subjected to the HP–HT treatments point to a creation of precipitates with mean height equal to about 1.5 nm (Fig. 6,b) or to surface roughness of about 3.4 nm for the case of Ia sample (Fig. 6,c). The surface of e sample II (Fig. 6,d) remains unchanged after the treatment and the same as in the untreated sample – 0.2 nm (AFM image of the as-grown Ib sample is pre- sented in Fig. 6,a). This image is typical of all as-grown GaMnAs/GaAs samples. The HP–HT treatment of the as-grown samples (as mentioned, practically no surface roughness has been detected for them) results in AFM – detectable visu- alization of defects. Fig. 6. AFM images of surface (2 × 2 μm area): a, b – sample Ib before and after HP–HT treatment, respectively; c, d – present AFM images for samples Ia and II, respectively, after HP–HT treatment Физика и техника высоких давлений 2009, том 19, № 2 39 For the I-type samples, the post-growth treatment results in a reduced content of Mn interstitial defects. It is assumed that just Mn interstitials can segregate at the GaMnAs surface [9]. The role of As clusters, which can be also formed upon annealing, remains unclear and requires further studies. The changed surface roughness observed in the HP–HT treated GaMnAs samples is probably also re- lated to the presence of various primary defects in the as-grown samples. 4. Conclusions Annealing of Si:Mn results in crystallization of amorphous Si within the buried implantation–disturbed layer and in the formation of Mn4Si7 clusters. The influ- ence of pressure-temperature conditions on a creations of the Mn4Si7 phase has been found. Influence of annealing under enhanced hydrostatic pressure on the GaMnAs layer structure in GaMnAs/GaAs depends on numerous processing and material parameters, among them the annealing temperature and primary defects present in the as-grown layers. Enhanced pressure applied during annealing of the MBE- grown layers at 670 K results in increased strain in GaMnAs. The change of strain, from the compressive to tensile one, related to a creation of MnAs nano- clusters, is more pronounced after annealing under enhanced hydrostatic pressure. The high-pressure treatment at 920 K causes polycrystallisation of amorphous material or further increase of tensile strain in the samples, dependent also on the primary defect structure. No clear correlation between the Mn concentration and the changed GaMnAs lattice parameters (after the HP–HT treatment) was found. This work was partially supported by the Ministry of Education and Science of Poland under the grant No. N20205232/1189. 1. K.M. Bolduc, C. Awo-Affouda, A. Stollenwerk, M.B. Huang, F.G. Ramos, G. Agnello, V.P. LaBella, Phys. Rev. B71, 033302 (2005). 2. Shegqiang Zhou, K. Potzger, Gufei Zhang, A. Mucklich, F. Eichhorn, N. Schell, R. Grotzschel, B. Schmidt, W. Skorupa, M. Helm, J. Fassbender, D. Geiger, Phys. Rev. B75, 0852003 (2007). 3. M. Moreno, A. Trampert, B. Jenichen, L. Daweritz, K. Ploog, J. Appl. Phys. 92, 4672 (2002). 4. M. Moreno, B. Jenichen, V.M. Kaganer, W. Braun, L.A. Trampert, L. Daweritz, K. Ploog, Phys. Rev. B67, 235206 (2003). 5. M. Moreno, V. Kaganer, B. Jenichen, L.A. Trampert, L. Daweritz, K. Ploog, Phys. Rev. B72, 115206 (2005). 6. M. Moreno, B. Jenichen, L. Daweritz, K. Ploog, Appl. Phys. Lett. 86, 161903 (2005). 7. A. Misiuk, B. Surma, J. Bak-Misiuk, Solid State Phen. 9, 270 (2006). 8. H. Park, K.S. Jones, J.A. Slinkman, M.E. Law, J. Appl. Phys. 78, 3664(1995). 9. S.C. Erwin, A.G. Petukhov, Phys. Rev. Lett. 89, 227201 (2002). Физика и техника высоких давлений 2009, том 19, № 2 40 J. Bak-Misiuk, P. Romanowski, J. Domagala, A. Misiuk, E. Dynowska, E. Lusakowska, A. Barcz, J. Sadowski, W. Caliebe ФЕРОМАГНІТНІ НАНОКЛАСТЕРИ В Si:Mn І GaMnAs, ВІДПАЛЕНИХ ПРИ ВИСОКИХ ТЕМПЕРАТУРІ І ТИСКУ Приведено результати вивчення дефектних структур шарів кремнію, імплантова- ного іонами Mn (Si:Mn) при різних температурах, і GaMnAs з подальшим відпалом при зовнішньому і високому тиску. Досліджено вплив умов відпалу на структурні властивості шарів Si:Mn і GaMnAs. Показано, що відпал імплантованих зразків Si:Mn призводить до кристалізації кремнію усередині заглибленого постімпланто- ваного шару, а також до утворення феромагнітних Mn4Si7-виділень. Виявлено, що зміна в GaMnAs-шарі напруження з того, що стискає, на те, що розтягує, пов'язана з утворенням нанокластерів MnAs, залежить від умов обробки і початкових дефектів структури і не залежить від концентрації Mn. Обговорюється вплив первинних де- фектів на структурні перетворення в шарі GaMnAs.