Solvable Lie algebras of derivations of polynomial rings in three variables
Let $\mathbb K$ be an algebraically closed field of characteristic zero, A=$\mathbb K$[x1,x2,x3] be the polynomial ring in three variables and R$=\mathbb K$(x1,x2,x3) be the field of rational functions. If L is a subalgebra of the Lie algebra W3($\mathbb K$) of all $\mathbb K$-derivations of A, then...
Збережено в:
Дата: | 2018 |
---|---|
Автори: | , , |
Формат: | Стаття |
Мова: | English |
Опубліковано: |
Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of NAS of Ukraine
2018
|
Теми: | |
Онлайн доступ: | http://journals.iapmm.lviv.ua/ojs/index.php/APMM/article/view/apmm2018.16.7-13 |
Теги: |
Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
|
Назва журналу: | Prykladni Problemy Mekhaniky i Matematyky |
Репозитарії
Prykladni Problemy Mekhaniky i MatematykyРезюме: | Let $\mathbb K$ be an algebraically closed field of characteristic zero, A=$\mathbb K$[x1,x2,x3] be the polynomial ring in three variables and R$=\mathbb K$(x1,x2,x3) be the field of rational functions. If L is a subalgebra of the Lie algebra W3($\mathbb K$) of all $\mathbb K$-derivations of A, then RL is a Lie algebra over $\mathbb K$ and dimRRL will be called the rank of L over R. We study solvable subalgebras L of W3($\mathbb K$) of rank 3 over R. It is proved that L is isomorphic to a subalgebra of the general affine Lie algebra aff3($\mathbb K$) if L contains an abelian ideal I of rank 3 over R. If L has an ideal I with rkRI=2, then L is contained in a subalgebra $\bar{\it L}$ of $\tilde{W}_3(\mathbb K)=\it{Der}_{\mathbb K}\it R$ such that $\bar{\it L}$ is an extension of a subalgebra of aff2(F) by a subalgebra of dimension ≤2, where F is the field of constants of I in R. Cite as: Ie. Yu. Chapovskyi, D. I. Efimov, A. P. Petravchuk, "Solvable Lie algebras of derivations of polynomial rings in three variables," Prykl. Probl. Mekh. Mat., Issue 16, 7–13 (2018), https://doi.org/10.15407/apmm2018.16.7-13 |
---|